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To include all types of singularities into a geometrically tractable theoretical 
scheme we change from Einstein algebras, an algebraic generalization of general 
relativity, to sheaves of Einstein algebras. The theory of such spaces, called 
Einstein structured spaces, is developed. Both quasiregular and curvature 
singularities are studied in some detail. Examples of the closed Friedmann world 
model and the Schwarzschild spacetime show that Schmidt's b-boundary is a 
useful theoretical tool when considered in the category of structured spaces. 

I N T R O D U C T I O N  

In previous work (Heller, 1992) we defined an Einstein algebra ~ as 
an abstract linear algebra C such that: 

(i) The C-module W" = ~ (C)  of  all C-vectors  is the Lorentz C-module.  
(ii) There exists a covariant derivative V in W such that Vg = 0, where 

g is the Lorentz scalar product in ~; .  
(iii) Ric = O. 

Instead of  (iii), let the following condit ion be satisfied: 

(iii ') Ein + Ag  = T 

Here Ein is the Einstein tensor, A the cosmologica l  constant,  and T a suitable 
energy-momentum tensor; one now speaks o f  an extended Einstein algebra. 

The C-vectors of  condition (i) are derivations o f  the algebra C. The C- 
module W of  all such C-vectors is said to be a Lorentz  C-module  if a scalar 
product  with the Lorentz signature can be defined in it. This always can be 
done if W has a basis (W0, W1 . . . . .  Wn). Condi t ion (ii) uses the fact that 
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for any scalar product g in ~ there exists exactly one symmetric derivative 
~7 in ~t~ such that ~rg = 0. By using it one can define the corresponding 
Riemann tensor. Since the existence of a basis (Wo, WI . . . . .  W~) is postulated 
in ~1/~, the trace operator is defined, and the Ricci tensor and consequently 
the Einstein equations can be introduced in ~ [condition (iii) or (iii')]. It 
can be easily seen that every spacetime manifold satisfying Einstein's equa- 
tions can be represented as an Einstein algebra, but not vice versa. There 
exist Einstein algebras which are essentially more general than the standard 
relativistic spacetimes, for instance, spacetimes including some singularities. 
The goal of the present paper is to study systematically this additional general- 
ity offered by the theory of Einstein algebras. 

Einstein algebras were originally defined as abstract linear algebras, 
but--without  loss of generali ty--one can constrain oneself to considering 
only functional linear algebras. One can always construct the Gelfand repre- 
sentation of an Einstein algebra ~/which is already a functional linear algebra, 
and is a universal representation of ~ / in  the sense that every representation 
of ~/ is  its subrepresentation [for details see Heller (1992)]. In the following 
we shall consider only real functional Einstein algebras. 

Let M be a nonempty set, and ~(M) a functional algebra defined on M 
Hausdorff separating points in M (if M does not enjoy this property, we can 
always introduce a suitable equivalence relation which would induce it). The 
pair (M, ~(M)) is called Einstein ringed space, and ~(M) its structural ring. 
Let ~ be an Einstein algebra; it can be easily seen that ~/: ~ ~ C~(M) is a 
subrepresentation of the Gelfand representation of ~ .  The pair (M, C~(M)) 
is called a Geroch ringed space. It is equivalent to a smooth manifold 
satisfying Einstein's equations (Geroch, 1972). Thus the theory of Geroch 
ringed spaces is equivalent to the standard theory of general relativity. 

Let C C R M be the set of all real functions on a nonempty set M such 
that (i) C is closed with respect to localization, and (ii) C is closed with 
respect to superposition with smooth functions on R ~ [for definitions of these 
concepts see Heller (1992)]. The pair (M, C) is called a differential space 
(in the sense of Sikorski), and C a differential structure on M. One can 
correspondingly define the Sikorski representation ~r: ~ ~ C of an Einstein 
algebra [one can also speak of a Sikorski ringed space (M, C)]. If we addition- 
ally assume that M is locally diffeomorphic to R ~, the differential space 
(M, C) changes into a smooth manifold (M, C~(M)), and the corresponding 
Sikorski ringed space reduces to the Geroch ringed space. 

It is obvious that the theory of Sikorski ringed spaces is more general 
than the standard theory of general relativity. It can be shown (Heller, 1992) 
that it contains, as its intrinsic elements, all spacetime singularities which do 
not violate the following property: there exists an open covering ~ of M 
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such that on each open set B e ~ there are n smooth 3 tangent vector fields 
forming a vector basis. A differential space for which this property holds 
is said to be of constant differential dimension. In particular, all regular 
singularities 4 can be easily dealt with by using the Sikorski formalism (Heller 
and Sasin, 1991). Spacetimes with stronger types of singularities cannot be 
organized into differential spaces admitting a global vector basis (in the 
above sense). To overcome this difficulty and to include stronger types of 
singularities into the formalism we should change from Einstein functional 
algebras to the sheaves of Einstein functional algebras. Such a program 
was outlined in previous work (Heller, 1992); the present study aims at its 
systematic development, 

In Section 1, we define Einstein structured spaces as sheaves of Einstein 
algebras satisfying a condition changing them into a workable structure. In 
Section 2, we discuss those Einstein structured spaces which contain regular 
and quasiregular singularities, and in Section 3 those which contain curvature 
singularities. An important theorem is proved giving us an insight into the 
structure of curvature singularities (considered as the b-boundary of space- 
time) over which the fiber of the frame bundle degenerates to a single 
point. In Section 4, the crucial example of the closed Friedmann universe 
is discussed. 

1. EINSTEIN STRUCTURED SPACES 

In the present relativistic paradigm singularities are organized into the 
so-called singular boundaries. A boundary 0M of spacetime M is defined to 
be a set of incomplete curves, the incompleteness itself being treated as a 
symptom of the existence of singularities. Then an equivalence relation p C 
0M X 0M is introduced dividing the set 0M into the classes of incomplete 
curves such that each class defines the single "ideal" point of the singular 
boundary. In this way, one obtains the singular boundary OM of spacetime 
M, OM = OM/p. Various constructions of OM differ in the choice of 0M or 
in the choice of P. To guarantee a suitable "contact" of spacetime M with its 
singular boundary OM a topological condition is assumed stating that M is 
dense in M := M U OM (Gruszczak and Heller, 1993, Section 3). In this 
way, various singular boundaries of spacetime have been defined [g-boundary 
(Geroch, 1968), b-boundary (Schmidt, 1971), p-boundary (Dodson, 1979), 
essential boundary (Clarke, 1979)]. In the following, we construct a theoretical 
scheme that incorporates all the above singularity definitions, although some 
of them in a more natural way than the others. 

3In the sense of the theory of differential spaces. 
4In the Ellis and Schmidt (1977) classification of singularities. 
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Definition 1. I. Let (M, topM) be a topological space. The sheaf �9 of 
real continuous (in topM) functions on (M, topM) is a differential structure 
on M if, for any open set U ~ topM and any functions fl . . . . .  fn e %(U), 
to e C~ the superposition to o (f l  . . . . .  f~) ~ ~(U).  The pair (M, %) is 
called a structured space [if necessary, a structured space is also denoted by 
the triple (M, topM, ~)].  

Definition 1.2. Let (M, topM), where M = M t.) OM, be a topological 
space such that M is open and dense in M; OM is called the boundary of M. 
Einstein structured space is a structured space such that for any p ~ U, U E 
topM, where topM is the topology on M induced from that of MI q~(U) is an 
Einstein functional linear algebra. Einstein structured spaces are also called 
sheaves of Einstein algebras. 

The concept of structured spaces (without naming it) was first introduced 
by Mostov (1979), and it turned out to be a natural generalization of Sikorski's 
differential spaces (Heller, 1991; Heller et al., 1992). Any structured space 
(M, topM, ~)  naturally becomes a Sikorski differential space if for any U e 
topM and any p ~ U there exists a bump function, i.e., a function q~ such 
that q0(p) = 1 and q01M - U = 0. 

Since M e topM, Or(M) of  Definition 1.2 is an Einstein algebra, and 
the sheaf ~M = c~ I M is locally free, i.e., the q~(M)-module ~(%M) of cross 
sections of the sheaf %M has a local %(M)-basis. Consequently, (M, %M) is a 
differential space (in the sense of Sikorski) of constant differential dimension. 
Therefore, when changing from the theory of Einstein algebras to the theory 
of sheaves of Einstein algebras we gain in generality only by considering 
the boundary OM. 

Let (M, ~ )  be an Einstein structured space. It can be easily seen that it 
defines a subrepresentation p~: ~ / ~  q~ I M of the Gelfand representation of 
an abstract Einstein algebra ~ .  

2. REGULAR AND QUASIREGULAR SINGULAR BOUNDARIES 

In this section we deal with regular and quasiregular singularities. As 
we shall see, the sheaf method will allow us to generalize some standard 
concepts and, consequently, to make a more detailed classification of singu- 
lar boundaries. 

Definition 2.1. An Einstein structured space is regular if OM = 0 or 
M U OM is of constant differential dimension. 

In the case of spacetime with regular singularities the corresponding 
Einstein structured space can be reduced to an Einstein ringed space (Heller, 
1992), and all spacetime structures can be naturally extended to M U OM 
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(Heller and Sasin, 1991). To include quasiregular singularities into our scheme 
we must introduce some auxiliary concepts. 

Let sgi = (Ml, q~l) and sg2 = (M2, ~2) be Einstein ringed spaces. Since 
Mj and M2 are topological spaces, we can introduce the following definition. 
An isometry o f  Einstein ringed spaces s~l and s~2 is a homeomorphism f :  
Ml --+ M2 such that (i) f*:  ~2 -+ %1 is an isomorphism of algebras, (ii) 
gl(X, Y) = g2(Xf ,  Yr), for X, Y ~ ~(M1) , where Xr(oO = X(c~ o f )  o f -~ ,  o~ E 
qg2, and gi and g2 are Lorentz metrics in the ~ ~-module ~e(~ 1) and ~2-module 
~(~2), respectively. 

Let (M1, ~ l )  and (M2, ~z) be regular Einstein structured spaces. An 
isometry of sheaves 

_f: (Ml ,  (~1) ~ (M2, (~2) 

is an isometry o f  regular Einstein structured spaces if: 

(i) f~: ~ 2(V) ~ ~ l ( f u  I(U)) is an isometry of Einstein ringed spaces, for 
V E topM2, U ~ topMl. 

(ii) glu(X, Y) = g2v(Xf, Yy), where U ~ topM1, V = f (U)  ~ topM2, and 
Xf(oQ = X(f~ot)  ~  c~ ~ ~2(10. 

Now, we are ready to define an isometry o f  Einstein structured spaces 
as a sheaf isometry 

q 
_f: (M1, ~1) ~ (M2, ~2) 

such that _f](M~, ('~1 I MI) is an isomorphism of regular Einstein structured 
spaces (M1, %1 tM~) and (/142, q~21M2). This definition means that the bound- 
aries OM1 and OM2 are homeomorphic, and Ml and/142 are isomorphic. 

We say that a rectifiable curve c[a, b] ~ M ends at a point p E OM if 
c(b) = p and there exists e > 0 such that c([b - �9 b)) C M. Let Endp denote 
the set of all smooth rectifiable curves ending at p ~ OM. We say that a 
curve c ~ Endp is of a continuous type if lim~b_C(t) = p. 

Definition 2.2. A boundary point p ~ OM is quasiregular if, for any 
rectifiable curve c E Endp, there exist, �9 > O, an open neighborhood U E 
topM such that c([b - e, b)) C U, and an isomorphic embedding 

~v: (U, �9 I U) --, (N, ,~') 

where (N, ,~) is a regular Einstein structured space of constant differential 
dimension dimM = m. 

This definition is more general than the standard quasiregular singularity 
definition (Ellis and Schmidt, 1977) only in that it allows for a local extension 
into a regular Einstein structured space instead of a usual smooth manifold. 
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However, it can be modified in the following way. Let us call an open 
neighborhood U �9 topM strictly adherent to p �9 OM if p �9 clU. 

Definition 2.3. A boundary point p �9 OM is adherently quasiregular if 
there exists an open neighborhood U �9 topM strictly adherent to p such that the 
Einstein structured space (clU, �9 I cIU) is a regular Einstein structured space. 

It is evident that every adherently quasiregular boundary point is quasi- 
regular, but not vice versa. The advantage of adherently quasiregular boundary 
points is that they are defined with no reference to any curves. 

The spacetime of  a straight cosmic string can serve as an example of  
an Einstein structured space with a quasiregular singular boundary. This 
example was analyzed in Heller (1992, Section 4). 

3. CURVATURE S I N G U L A R  BOUNDARIES 

Let (M, qZ) be an Einstein structured space, p e OM, and c e Endp. We 
assume that there exist e > O, b e R such that c([b - e, b)) C M and c(b) 
= p. Let further E(t) = (el . . . . .  en) be a frame parallelly transported along 
the curve c, i.e., 

E: [b - r b)-+ F(M) 

where F(M) is the frame bundle over M and t �9 [b - ~, b). 

Definition 3.1. p �9 OM is said to be a curvature singularity if at least 
one of the components of  the Riemann tensor with respect to E(t) diverges. 

Let (M, ~ )  be an Einstein structured space such that its singular boundary 
OM contains curvature singularities. To answer the question of how the 
differential structure behaves at such boundaries we must specify a concrete 
boundary. Since curvature singularities are related to the behavior of moving 
frames along curves going to such a boundary, our choice is Schmidt's b- 
boundary of spacetime. First, we show that the b-completion of any spacetime 
can be organized into an Einstein structured space. 

Proposition 3.2. Let (M, g) be a spacetime. On the b-completion M of  
M there exists the differential structure ~ such that ~(M)___-- C~(M) and if 
(M, g) is a solution to Einstein's field equations, then (M, ~ )  is an Einstein 
structured space. 

Proof  By construction. Let (M, g) be a spacetime, F(M) the connected 
component of the (pseudo-)orthonormal frame bundle over M, and G a Rie- 
mann metric on F(M) defined in the standard way by using connection on 
M (Schmidt, 1971). For a sufficiently large n �9 N there exists an isometric 
embedding ~: F(M) '-* R n such that G = ~*~. Such an embedding is not 
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unique, but all Riemann metrics resulting from all such embeddings are 
uniformly equivalent (Schmidt, 1971). This fact guarantees that the following 
boundary construction is independent of the concrete embedding. 

The differential structure C=(F(M)) on F(M) is generated by the set of 
pro jec t ions  {'i'l'l [ F ( M ) , . . . ,  7r n iF(M)}, where w/: R n ~ R are the projections 
on the ith coordinate. 

In the standard way, one constructs the closure F(M) = F(M) t_J 0, 
where 0 is the Cauchy boundary ofF(M). It is evident that F(M) is the closure 
of F(M) in R' .  Therefore, one can define the differential structure (%~)V--~ 
on F(M) induced from the differential space (R',  ~ , )  where %, := C=(Rn). 

The structural group of the frame bundle, which is the proper Lorentz 
group ~+ ,  acts on F(M). The b-completion of M, in the category of structured 
spaces, is defined to be the quotient structured space (M, %), where M = 
F(M)/~T+, and % = (%n)c--~/P, P being the equivalence relation defined by 
the action of the group ~+,  i.e., �9 is the sheaf on the topological space 
(F(M)/p, topF(M)/p) given by 

((~n)F-~o)(V) = {f." V- -*R: fo  7rl'rr-l(V) ~ (~,)r--~(Tr-l(V))} 

for V ~ topF(M)/o, where ~r is the projection of  a point onto its equivalence 
class (orbit). This ends the proof, but, for the sake of completeness, let us 
add that the b-boundary of M is defined to be ObM = M - M = Ir(F(M)) 
- ~r(F(M)). l, 

Theorem 3.3. Let Po E ObM. If the fiber w-~(P0) degenerates to a single 
point, i.e., if the entire boundary F(M) - F(M), F(M) C R n, is a single orbit 
over P0 of the group action ~t+ • F(M) -~ F(M), then the only global_cross 
sections of  Einstein structured space (&r ~)  are constant functions, i.e., ~(U4) 

R, and the only open neighborhood of P0 is the entire M. 

Proof Let F (~ / )be  the set of all global cross sections of an Einstein 
structured space (M, ~),  and let us consider a ~ F(~-I-'/) = C~(F----(-(~/~*+). 
Then fi = a o Iv ~ C=(F(M)) is constant on orbits. 

Let {e~} E w-l(p) ,  p E M, be the set of frames convergent to e 
F(M) (such a point always exists by the definition of  closure). Of  course, 
one has ~(e,) = Cl for any n E N. 

From continuity of 6L it follows that 

lim 6t(en) = 6t(e) = a(p0) 
n--.cx~ 

The last equality follows from the fact that e ~ "rr-l(p0). On the other hand, 

lim a(e,)  = cl 
n,-~co 

since it is a constant sequence. Therefore, cx(p0) = Cl. 
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Let us notice that 

6L(e,,) = a o ,rr(en) = ct(p) 

Hence, ct(p) = ct(p0). 
To prove the second part of the theorem let us assume that V is an open 

neighborhood of the point P0 (in the quotient topology). "rr-~(V) is an ~U+- 
invariant open set in F(M) [i.e., if -rr-l(V) contains a point, it also contains 
its orbit]. It follows that "rr-~(V) contains the boundary F(M) - F(M), and 
it is of the form W N F(M), where W ~ topR n, (F(M) - F(M) C W. 

There exists a cross section s: M --* F(M) such that s(M) C w-l(V). 
Since the set "rr-l(V) is ~s and contains values of a certain cross 
section, it must coincide with the entire space F(M). This is equivalent to 
the fact that V = M. �9 

Corollary 3.4. Let the condition of Theorem 3.3 be satisfied. The b- 
boundary OhM of M consists of a single point. 

Proof The differential structure ~ on M = M U Ob M, consisting only 
of constant functions, does not distinguish points. �9 

Properties of the b-boundary ObM, expressed in Theorem 3.3 and Corol- 
lary 3.4, are not disastrous for spacetime M itself. Since M is open (and 
dense) in M, the sheaf ~(M) contains enough functions to define the smooth 
manifold structure on M. However, from all these functions only constant 
functions can be prolonged to M. This fact shows a disastrous character of 
singularities. In Heller et al. (1992) a singular boundary point P0 such that 
the fiber "rr-l(p0) degenerates to a single point was called a malicious boundary 
point (or a malicious singularity). 

In view of the above, it would be useful to have an independent criterion 
telling us when a singular fiber degenerates to a single point. To find such 
a criterion one can turn to the holonomy group. Clarke (1978) defined the 
singular holonomy group Gp at p, p ~ ObM, which essentially is the group 
of Lorentz transformations that are generated by the parallel transport around 
arbitrary short loops near p. Any -rr-l(p), for p ~ ObM, is a homogeneous 
space of the form ~+/Gp. If Gp = ~s the fiber 7r-l(p) is reduced to a single 
point. This leads to the following result. 

Corollary 3.5. If Gp = ~+,  then p ~ C)bM is the malicious boundary 
point. �9 

4. EXAMPLES 

A. Two-Dimensional Closed Friedmann Universe (Bosshard, 1976; see 
also Dodson, 1978, Chapter III,3). Let us consider a spacetime 
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N = {(~q, X): ~q ~ (0, T), • ~ S 1 } 

where (0, T) C R, with the metric 

MS 2 = R 2 ( q ] ) ( - d , q  2 Jr- dx 2) 

We assume that R2('q) ~ 0 as "q ~ 0. Without loss of  generality we 
assume also that R(~q) -- ~qP, for some P > 0, as "q ~ 0. This behavior 
corresponds to the initial singularity. 

The positively oriented component of  the orthonormal frame bundle 
O+N over N is of the form 

0 §  ~l,X, ks inhX cosh , ~  0x :(~l,X) ~ N , h  ~ R 

and the Riemann metric on O§ [constructed as in Schmidt (1971)] is 

Ms 2 = RZ('q)(d'q 2 + dx 2) cosh 2h - 2 d'q d X sinh 2h + \R- -~  dX + dh. 

By using the construction given in the proof  of  Proposition 3.2 one 
could obtain the structured space (N, q~), N = N U ObN, representing spacetime 
of the two-dimensional closed Friedmann model with its b-boundary. How- 
ever, we shall use Theorem 3.4 to show that q~ consists only of  constant 
functions. 

Let us consider the initial singularity at "q = 0. We fix X0 in S ~ and 
construct the sequence s: N ~ O+N 

n ~ (~., X0, 0) 

for some ~q. E (0, T) such that "q. ~ 0. For all n > no E N this sequence 
lies on the horizontal curve c: [0, 1) ~ O+N 

t ~ (1 - t ,  Xo, 0) 

Indeed, for all n > no there exists t. ~ [0, 1) such that 0 .  = 1 - t. and 
t . - ~  1. 

We have 

lie(011 = R(1 - t) 

For large enough k, n ~ N we obtain 

d(s(n),s(k)) <- I ?  "~(t)lldt ~ f ~k ~ 

By using this inequality it can be easily checked that s is a Cauchy sequence. 
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Its equivalence class determines a point Po of the Cauchy boundary of O§ 
Consequently, P0 = W(Po) ~ ObN is the initial singularity at "q = 0, X = Xo. 

Similarly, the sequence r: N ~ O+N given by 

n ~ ('q., Xo + Bn, kl) 

where "q. ~ 0, 8. ~ 0, and • X1 are fixed, is another Cauchy sequence 
determining a pointpl e O+N. One has cr(pl) = 7r(fio) = Po~  OoN. Therefore, 
Pl and fi0 belong to the same fiber. 

The horizontal curve k.: [0, ~n] ~ 0 +N given by 

t ~ ~ . , X o + t ,  r(~q.) 

joins s(n) and r(n) for every n E N, and its length is 

K . =  RnI~" [cosh (2R('q")t)]l'2dtR(rln) 

= R2('qn) 2k) 1/2 dh (cosh 

R2('q") ~-1 --< ~ ~ sinh 

The last inequality follows from 

0 < cosh h -< (cosh 2k) 1/z <-- ~ cosh h 

Taking into account that "q --* 0 as "q ~ 0, we obtain 

K n --+ ]~/2 sinh h,'q,~ 

Since p > 0, K, --* 0 as n --* oo. 
Therefore, we have established that, in the limit as n ~ % d(po,/71) = 

0, and consequently P0 = Pl. However, these points were chosen arbitrarily. 
Hence, the fiber "tr-~(p0) degenerates to a single point. 

If we additionally assume that R('q) --* 0 as -q ~ T, T e R +, we have 
the final singularity in the model. By Corollary 3.4 this singularity together 
with the initial singularity at "q = 0 constitute the same point of the b- 
boundary. From the viewpoint of the theory of structured s__paces this should 
be interpreted in the following way. From the fact that qg(M) ~ R it follows 
that the set ~f(M) of all vector fields on M consists of zero vector fields (i.e., 
only zero vector fields can be prolonged from M to M), and consequently 
the "bundle length" of any curve joining the initial and final singularities is 
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zero. This shows an "inaccessible" character of these singularities. But from 
the point of view of any observer who does not "touch" the boundary, there 
are no pathologies at all (see also Heller and Sasin, 1993, 1994). 

B. Two-Dimensional Schwarzschild Spacetime (Johnson, 1977). A simi- 
lar analysis can be carried out for the two-dimensional Schwarzschild space- 
time with the metric 

dr 2 
ds2 - ( 2 / r -  1) 1/2 + r dx  2 

In this model, the singularity is at r = 0. The fiber over it degenerates 
to a single point, and Theorem 3.3 applies. 

C. Four-Dimensional Closed Friedmann Universe and Four-Dimen- 
sional Schwarzschild Spacetime. The above two examples can be generalized 
to the corresponding four-dimensional cases. In fact, in original papers study- 
ing these cases (Bosshard, 1976; Johnson, 1977) the "reduction" of four- 
dimensional Friedmann and Schwarzschild spacetimes to two dimensions 
was used to demonstrate the degeneracy of the fibers over singularities in 
these models (see also Dodson, 1978, Chapter III,3). 

5. CONCLUDING REMARKS 

In the previous work (Heller, 1992) and in the present one we have 
proposed an algebraic generalization of Einstein's general relativity. Our 
theory works on more general spaces than traditional differentiable manifolds. 
If one limits oneself to domains without singularities, the standard theory of 
relativity is recovered. To deal with milder types of singularities (such as 
regular singularities) one functional algebra, called Einstein algebra, is enough 
(this case was considered in the previous paper); to cover all types of singulari- 
ties one must change to a sheaf of Einstein algebras. As examples of the closed 
Friedmann world model and the Schwarzschild spacetime show, Schmidt's b- 
boundary construction turns out to be useful. "Pathologies" discovered in 
these cases by Bosshard (1976) and Johnson (1977) become a useful tool of 
analysis when considered in the category of sheaves of linear algebras (see 
above, Section 4). 

One could expect that some sorts of singularities can also appear when 
one changes to the quantum gravity regime: the smooth manifold structure 
of spacetime can break down and some more general spaces can enter the 
scene. So far our algebraic approach in this area has been used in two ways. 
First, the idea that in quantum gravity smooth manifolds could be replaced 
by Einstein algebras was explored by Heller (1993) and by Kull and Treumann 
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(1995). We should notice that in such a case the Einstein equations are 
automatically satisfied. Second, one can also change from commutative to 
noncommutative Einstein algebras, and try to develop a formalism analogous 
to that used in quantum field theory. This approach was hinted at by Heller 
(1993), and the working model was constructed by Parfionov and Zapatrin 
(1994). 

An important task would be to find experimental predictions of our 
generalized theory. They should be looked for in quantum gravity domains 
in which the manifold structure of spacetime breaks down. There is theoretical 
evidence (Heller, 1993) that they could be connected with the fact that in 
such domains the equivalence principle in its usual formulation is not valid. 
One should expect that it will be replaced by some generalization. The theory 
of Einstein algebras opens some possibilities. 
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